1. Review:

In last lecture, we introduced two circuit laws, which govern the currents and voltages in a circuit.

Physics \Rightarrow Engineering

Conservation of charges \Rightarrow KCL \Rightarrow The sum of currents entering/leaving a node $= 0$.

Conservation of energy \Rightarrow KVL \Rightarrow The sum of branch voltages along a loop $= 0$

We have applied KVL to solve one circuit:

Step 1: Define loops & loop currents: I_1, I_2
Step 2: Set up KVL equations:

\[
\begin{align*}
L_1 : & \quad V_{13} - V = 0 \\
L_2 : & \quad V_{13} + V_{31} - V_{13} = 0
\end{align*}
\]

Step 3: Write voltages in terms of loop currents:

\[
\begin{align*}
(I_1 - I_2)R_3 - V &= 0 \\
I_2R_1 + I_2R_3 - (I_1 - I_2)R_3 &= 0
\end{align*}
\]

Step 4: Solve the two variables from the two equations.

Can we use KCL to solve the same circuit?
2: KCL Example:

\[V = 3 \text{V} \]
\[R_1 = 50 \text{\Omega} \]
\[R_2 = 75 \text{\Omega} \]
\[R_3 = 25 \text{\Omega} \]

Determine all voltages & currents in the circuit.

Step 1: For a circuit with \(n \) nodes (\(n = 3 \), here), make one node as the GND (3, here) and apply KCL to the other \(n-1 \) nodes.

Step 2: Set up KCL equations for nodes 1 & 2. [We need to label some currents]

\[N_1 : \quad I_1 = I_3 + I_2 \]
\[N_2 : \quad I_3 = I_4 \]

Step 3: Express branch currents in terms of node voltages \((V_1, V_2)\)

\[N_1 : \quad I_1 = \frac{V_1 - V_2}{R_1} + \frac{V_1}{R_3} \quad \text{[Note that we can't do this for } I_2] \]
\[N_2 : \quad \frac{V_1 - V_2}{R_3} = \frac{V_2}{R_2} \]

Step 4: Express the node voltages in terms of known voltage \((V_1 = V)\)

\[N_1 : \quad I_1 = \frac{V - V_2}{R_1} + \frac{V}{R_3} \]
\[N_2 : \quad \frac{V - V_2}{R_1} = \frac{V_2}{R_2} \]

Two equations & two variables \((I_1, V_2) \Rightarrow \text{solve them.}\)
Numerical Results:

\[I_1 = \frac{V - V_2}{R_1} + \frac{V}{R_3} \] \hspace{1cm} (1) \\
\[\frac{V - V_2}{R_1} = \frac{V_2}{R_2} \] \hspace{1cm} (2) \\

(5) \[\frac{V}{R_1} = \frac{V_2}{R_1} + \frac{V_2}{R_2} \Rightarrow \frac{V}{R_1} = \left(\frac{1}{R_1} + \frac{1}{R_2} \right) V_2 \Rightarrow \frac{V}{R_1} = \frac{R_1 + R_2}{R_1 R_2} V_2 \]

\[\Rightarrow V_2 = \frac{R_2}{R_1 + R_2} V = \frac{75}{50 + 75} \times 5 = 3 \text{ V} \]

(1) \[I_1 = \frac{5 - 3}{50} + \frac{3}{25} = \frac{12}{50} = \frac{6}{25} \text{ A} \]

Then, we can determine other values.

3. **GND**

For the above analysis, we use node 3 as GND.

We get \(I_1, I_2, I_3 \):

\[V_1 = 5 \text{ V}, \; V_2 = 3 \text{ V}, \; V_3 = 0 \]

Now, what happens if we change the GND, say let \(V_3 = 0 \).

Will this change \(I_1, I_2, I_3 \)? No

Will this change \(V_1, V_2, V_3 \)? Yes, \(\Rightarrow V_1 = 2 \text{ V}, \; V_2 = 0, \; V_3 = -3 \text{ V} \)

But, \(V_1 - V_2, \; V_1 - V_3 \) & \(V_2 - V_3 \) don't change.

So, GND is just a reference.
Some students have found that, in fact, we don't need KCL & KVL for analysing the above circuit.

\[
I_2 = \frac{V}{R_3} \\
I_3 = \frac{V}{R_3 + R_1}
\]

But, the typical circuit we meet in practice is not that simple.

4. A complex example:

There are 4 nodes & 6 branches (containing one circuit component.)

Can we find a simple method to solve the circuit?

No.

No worries! We call KCL & KVL the "systematic circuit analysis methods", because they can be utilized for solving "any" circuit.
Step 1: Label loops to include all branches.

![Diagram of electrical circuit]

Note that there are other ways to label loops. (Compare to your lecture notes.)

Step 2: Write down the loop equations (KVL)

\[
\begin{align*}
L_1 & : \ V_{AD} + V_{DB} + V_{BA} = 0 \quad \text{Here, } V_{BA} = -10 \text{ V} \\
L_2 & : \ V_{AC} + V_{CD} + V_{DA} = 0 \\
L_3 & : \ V_{DC} + V_{EC} + V_{DB} = 0
\end{align*}
\]

Step 3: Express voltages in terms of loop current.

\(V_{AD} \) is the voltage drop over \(R_1 \). By Ohm’s Law, it should be \(I_{AD} \times R \),

Here, \(I_{AD} \) is the effective current going through \(R \), with \(I_{AD} = I_1 - I_2 \)

Similarly, \(I_{DB} = I_1 - I_3 \). Thus, we have

\[
\begin{align*}
L_1 & : \quad \frac{(I_1 - I_2)R_1}{V_{AD}} + \frac{(I_1 - I_3)R_2}{V_{DB}} - 10 = 0 \\
L_2 & : \quad \frac{I_1R_3}{V_{AC}} + \frac{(I_2 - I_3)R_5}{V_{CD}} + \frac{(I_2 - I_1)R_1}{V_{DA}} = 0 \\
L_3 & : \quad \frac{(I_3 - I_2)R_5}{V_{EC}} + \frac{I_3R_4}{V_{DB}} + \frac{(I_3 - I_1)R_1}{V_{DA}} = 0
\end{align*}
\]

Note that here we didn’t label the positive & negative terminals, but just use the fact \(V_{DA} = I_{DA} \times R \).

0 ➔ A
0 ➔ A
Step 4: Reorganize the three equations with respect to \(I, I_1, I_3 \)

\[
\begin{align*}
(\mathcal{R}_1 + \mathcal{R}_2)I - \mathcal{R}_1 I_1 - \mathcal{R}_3 I_3 &= 10 & \text{L}_1 \\
-\mathcal{R}_1 I_1 + (\mathcal{R}_1 + \mathcal{R}_2 + \mathcal{R}_3)I_3 - \mathcal{R}_5 I_3 &= 0 & \text{L}_2 \\
-\mathcal{R}_3 I_3 - \mathcal{R}_5 I_3 + (\mathcal{R}_3 + \mathcal{R}_4 + \mathcal{R}_5)I_3 &= 0 & \text{L}_3
\end{align*}
\]

3 Variables & 3 equations \(\Rightarrow \) Done!

After getting \(I, I_1, I_3 \), we can determine currents going through all components. For example, \(I_{R_1} = I_1 - I \), \(I_{R_2} = I_1 - I_3 \)

※ Remarks: Look at equations 1 2 3. What can you observe.

1. \(\Rightarrow \) \((\mathcal{R}_1 + \mathcal{R}_2)I - \mathcal{R}_1 I_1 - \mathcal{R}_3 I_3 = 10 \)

\(\text{Contribution of } I \text{ to loop 1 voltage.} \)
\(I \text{ goes through two resistors.} \)

\(\text{Contribution of } I_3 \text{ to loop 1 voltage} \)
\(I_3 \text{ goes through } \mathcal{R}_3 \)
(In the opposite direction, "-"

Basically, loop 1 has three components

Three loop currents contribute to the loop voltages through different components and in different ways ("+", "-")