L10 Circuit Analysis

We have done some circuit analysis, such as calculating I_o in the transistor circuit.

To do that, we look at the left loop and get $I_o = \frac{5 - 0.7}{R_8}$

What is the physics background for this?

Are there any systematic ways for circuit analysis?

1. Terms for circuit analysis:

 1) **Node**: an electrical point connecting terminals of two or more circuit elements.

 2) **Branch**: circuit element between two nodes.

 3) **Loop**: any circuit branch that ends at its starting node, without passing an intermediate node more than once.

4) **Current**: $I_{AB} = I_1, \quad I_{BA} = I_2$

 $I_{AB} = -I_{BA}$ The actual current direction is labeled as the direction on which positive charges flow. So, $I_{AB} = 1\text{A}$ represents currents on different directions.

5) **Voltage drop**: $V_{AB} = V_A - V_B, \quad V_{BA} = -V_{BA} \quad V_A = V_A - \text{GND}$
Note that L_3 is determined by L_1 & L_2.

Example:

![Circuit Diagram]

- Node 1
- Node 2
- Node 3
- Loop 1
- R_1
- V

Example:

![Circuit Diagram]

- Node N_1
- Node N_2
- Node N_3

Example:

![Circuit Diagram]

- Loop 1
- Loop 2
- L_1
- L_2

Note that L_3 is determined by L_1 & L_2.

Example:

![Circuit Diagram]

- Node 1
- Node 2
- Node 3
- R_1
- V

2. Kirchhoff's current law (KCL)

Physics basis: Conservation of charges (charges can't be created or destroyed).

\[\text{KCL: The algebraic sum of all branch currents entering and leaving a node is zero at all instants of time.} \]

\[\begin{align*}
\text{Entering} & : I_a - I_b - I_c - I_o = 0 \\
\text{Leaving} & : -I_a + I_b + I_c + I_o = 0 \\
\text{Entering} = \text{Leaving} & : I_a = I_b + I_c + I_o \\
\end{align*} \]

3. Kirchhoff's voltage law (KVL)

Physics basis: Conservation of energy \(\Rightarrow \) Consider moving a charge around a loop.

\[\text{KVL: The algebraic sum of all branch voltages around any loop is zero at all instants of time.} \]

Example:

\[E_{AB} + E_{BC} + E_{CD} + E_{DA} = 0 \]

\[\Rightarrow V_{AB} + V_{BC} + V_{CD} + V_{DA} = 0 \]

Two forms:

\[V_{AB} + V_{BC} + V_{CD} = 0 \]

\[V_{AB} + V_{BC} + V_{CD} = -V_{DA} = V_{AD} \quad \Rightarrow \quad \text{The algebraic sum of all branch voltages on any path between two nodes are equal.} \]
KVL Example:

Given V, R_1, R_2, R_3,
Solve I_1, I_2.

General procedure:

Step 1: Define/Label loops. L_1 & L_2.

Step 2: Set up KVL equation for all loops.

$L_1: V_{13} - V = 0$ [Use the loop current direction (arrow) to determine the "+" "-" sign before the voltage.
For example, \bigcirc hits R_3 at the "+" terminal.
Then, "+" V_{13}.
\bigcirc hits the voltage source at the "-" terminal. So, "-" V

$L_2: V_{12} + V_{23} - V_{31} = 0$ [$V_{12} + V_{23} + V_{31} = 0$]

Step 3: Write voltages in terms of loop currents (I_1, I_2). Ohm's law
\[V_{i3} - V = 0 \]
\[V_{i2} + V_{i3} - V_{i3} = 0 \]
\[\downarrow \]
\[I_{i3} \cdot R_3 - V = 0 \]
\[I_{i2} \cdot R_1 + I_{i2} \cdot R_2 - I_{i3} \cdot R_3 = 0 \]
\[\downarrow \]
\[(I_{i2} - I_{i3}) \cdot R_3 - V = 0 \]
\[I_{i2} \cdot R_1 + I_{i2} \cdot R_2 - (I_{i2} - I_{i3}) \cdot R_3 = 0 \]
\[\downarrow \]
\[R_3 \cdot I_{i1} - R_1 \cdot I_{i1} = V \]
\[-R_3 \cdot I_{i1} + (R_1 + R_2 + R_3) \cdot I_{i2} = 0 \]

What is \(I_{i3} \)?

\(I_{i3} \) is the "total" current entering \(R_3 \) from node \(L \) \(\Rightarrow \) So, \(I_{i3} = I_1 - I_2 \)

two equations & two unknowns.

Consider \(V = 5 \text{V} \)

\(R_1 = 50 \text{ \Omega} \)
\(R_2 = 75 \text{ \Omega} \)
\(R_3 = 25 \text{ \Omega} \)

Step 4: Solve the equations.

\[\begin{align*}
25 I_1 - 25 I_2 &= 5 \\
-25 I_1 + (50 + 75 + 25) I_2 &= 0
\end{align*} \]

\(\Rightarrow 125 I_2 = 5 \Rightarrow I_2 = 0.04 \text{A} \)

\(\downarrow \downarrow \)

From (1), \(25 I_1 = 5 + 25 \times 0.04 = 6 \Rightarrow I_1 = 0.24 \text{A} \)

Then, we can determine \(V, V_1 \) - - - - - - - - - - - - -
5. Circuit Simplification

For the above circuit, we can simplify the analysis without using KVL.

\[R = \rho \frac{L}{A} \]

Some general rules:

- Branch voltage in parallel with a voltage source is known.

- Branch current in series with a current source is known.

\[R_1, R_2, \ldots, R_N \quad \Rightarrow \quad \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_N} \]

\[\Rightarrow \quad R_{eq} = \frac{1}{R_1 + \frac{1}{R_2} + \cdots + \frac{1}{R_N}} \]